

[Gomathi, 5(12): December2018] DOI- 10.5281/zenodo.2526362

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES COMMON FIXED POINTS OF RELATIVELY NONEXPANSIVE MAPPINGS BY ITERATION

S. Gomathi^{*1} & V. Sankar Raj²

^{*1&2}Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India

Abstract

Let us consider two nonempty closed convex subsets A, B of a strictly convex space and $f_i : A \cup B \rightarrow A \cup B$, i = 1, 2, ..., k be a reltively nonexpansive mappings. i.e. $f_i(A) \subseteq A$ and $f_i(B) \subseteq B$ and $||f_ix - f_iy|| \le ||x - y||$, for all $x \in A$ and $y \in B$. In this paper, we provide the strong convergence of some iteration of the mappings $\{f_i\}_{i=1}^k$ to a common fixed point of $\{f_i\}_{i=1}^k$ in strictly convex space setting, which generalizes a result of Kuhfittig [7].

Key words: Relatively nonexpansive mappings, fixed points.

AMS Subject classification: 54H25,47H10.

I. INTRODUCTION

We know that the behaviour of the iterated sequences play an role in fixed point theory. It is well known fact that if an iterated sequence of a continuous mapping T converges, then the limit of it must be a fixed point of T. Also, Banach contraction principle states that every contraction mapping T : $A \rightarrow A$, where A is a complete subspace of a metric space X, has unique fixed point in A and every iterated sequence of T starting from any $x \in A$ converges to the unique fixed point of T. But the behaviour of the iterated sequences of nonexpansive mappings are completely different from the iterated sequences of contractive type mappings.

Consider a nonexpansive mapping $T : A \to A$, where A is a nonempty closed convex subset of a normed linear space X. In [1], Krasnoselskii proved that in uniformly convex Banach space X, the sequence of successive approximation of the averaged mapping $F : A \to A$ given by F(x) := (x + T x)/2, for all $x \in A$, converges to a fixed point of the nonexpansive mappings T. A complete proof of Krasnoselskii's results in English can be found in [2]. Later, in [3], Edelstein extended Krasnoselskii's result to strictly convex space setting.

In [4], the authors introduced a class of mappings called relatively nonexpansive defined as follows, which generalizes the notion of nonexpansive mappings.

DEFINITION 1. Let A, B be nonempty subsets of a normed linear space X and T : $A \cup B \rightarrow A \cup B$ be a mapping. Then T is said to be a relatively nonexpansive mapping if and only if

1. T (A) \subseteq A and T (B) \subseteq B, 2. $||T x - T y|| \le ||x - y||$, for all $x \in A$, $y \in B$.

Define that dist(A, B) = inf{ $||a - b|| : a \in A, b \in B$ } and for any given pair of subsets A, B of a normed linear space X, define A₀ = {x \in A; ||x - y|| = dist(A, B), for some $y \in B$ }. In [5], the authors provided sufficient conditions

(C)Global Journal Of Engineering Science And Researches

[Gomathi, 5(12): December2018] DOI- 10.5281/zenodo.2526362

which ensure the non emptiness of the set A_0 . In [6], the authors proved that A_0 is contained in the boundary of the set A.

In [4], the authors introduced and used the geometric notion called proximal normal structure to prove the existence of the best proximity point. In [8], the authors generalized the results in [4]. In [7], the main result is as follows.

THEOREM 1.1. Let C be a convex compact subset of a strictly convex Banach space X and $\{T_i : i = 1, 2, ..., k\}$ a family of non-expansive self mappings of C with a nonempty set of common fixed points.

Then for an arbitrary starting point $x \in C$, the sequence $\{U_k^n x\}$ converges strongly to a common fixed point of $\{T_i : i = 1, 2, ..., k\}$.

In this article, we generalized the above theorem of [7].

II. PRELIMINARIES

In this section, we introduce basic definition and results which we used in our main result. We generalized the iteration of nonexpansive given in [7]

REMARK 2.1. Let A, B be two nonempty convex subsets of a Banach space X. Let $f_i : A \cup B \rightarrow A \cup B$, i = 1, 2, ... k, be a reltively nonexpansive mapping. Fix $F_0 = I$. For $0 < \alpha < 1$.

Let $F_1 = (1 - \alpha)I + \alpha f_1 F_0$ $F_2 = (1 - \alpha)I + \alpha f_2 F_1$ \vdots $F_k = (1 - \alpha)I + \alpha f_k F_{k-1}.$ $x_{n+1} = (1 - \alpha) x_n + \alpha f_k F_{k-1} x_n$ (1) Put $k = 1, x_{n+1} = (1 - \alpha) x_n + \alpha f_1 F_{0 xn}$ (2) $= (1 - \alpha) x_n + \alpha f_1 x_n$

Let us state an convergence result, which plays a vital role in our main result.

THEOREM 2.1. [8]Let A, B be nonempty closed convex subsets of a strictly convex Banach space X such that A_0 is nonempty. Let $T : A \cup B \rightarrow A \cup B$ be a relatively nonexpansive mapping. Suppose T (A) is contained in a compact subset A_1 of A. Then the Krasnoselskii's iteration {F n(x)}, where F: $A \cup B \rightarrow A \cup B$ given by $F(x) = 1 \setminus 2(T x + x)$, converges to a fixed point of T.

III. MAIN RESULT

Our main result is as follows.

THEOREM 3.1. Let A, B be two nonempty convex, compact subsets of a strictly convex Banach space X with A_0 is nonempty. Let $f_i : A \cup B \rightarrow A \cup B$, $i = 1, 2, 3 \dots$, k be mappings with a non empty set of fixed points $||f_i(x)|$

217 (C)Global Journal Of Engineering Science And Researches

ISSN 2348 – 8034 Impact Factor- 5.070

[Gomathi, 5(12): December2018] DOI- 10.5281/zenodo.2526362

ISSN 2348 - 8034 Impact Factor- 5.070

 $-f_i(y) \le ||x - y||, \forall x \in A \text{ and } \forall y \in B \ni f(A) \subseteq A \text{ and } f(B) \subseteq B \text{ with the condition that } f(A) \text{ is contained in a compact subset } A_1 \text{ of } A.$ Then $\{F_k^n(x)\}$ converges to a fixed point of $f_i, \forall x \in A \cup B$.

Proof. We can easily prove that the mappings F_j and $f_j F_{j-1}$, j = 1, 2, ..., k. are relatively nonexpansive and map A \cup B into itself.

Now we are going to prove $\{F_1, F_2, \ldots, F_k\}$ and $\{f_1, f_2, \ldots, f_k\}$ have the same set of common fixed points. Let $x \in A \cup B$ with $f_j(x) = x, j = 1, 2, \ldots, k$. Then

$$\begin{split} F_1(x) &= (1-\alpha)x + \alpha f_1 F_0(x) = (1-\alpha)x + \alpha f_1(x) = (1-\alpha)x + \alpha x = x, \\ F_2(x) &= (1-\alpha)x + \alpha f_2 F_1(x) = x \end{split}$$

Proceeding like this, we get $F_j(x) = x, j = 1, 2, ..., k$.

Now, let $F_j(x) = x$, j = 1, 2, ..., k. $x = F_j(x) = (1 - \alpha)x + \alpha f_j F_{j-1}(x) = (1 - \alpha)x + \alpha f_j(x)$ $\Rightarrow \alpha x = \alpha f_j(x)$ Hence $f_i(x) = x$, j = 1, 2, ..., k.

Since (1) has the same form as (2), $\{F_k^n(x)\}$ conveges to a fixed point y of f_kF_{k-1} . We wish to show next that y is a common fixed point of f_k and $F_{k-1}(k \ge 2)$. To this we first show that $f_{k-1}F_{k-2}y = y$ ($k \ge 2$). Suppose not, the closed line segment [y, $f_{k-1}F_{k-2}y$] has positive length.

Let $z = F_{k-1}y = (1 - \alpha)y + \alpha f_{k-1}F_{k-2}(y)$

By hypothesis, there exists a point $w \in A \cup B$ such that $f_1w = f_2w = \cdots = f_kw = w$. Since f_i and F_i have the same common fixed points, it follows that $f_{k-1}F_{k-2}-w = w$.

By relatively nonexpansive, $||f_{k-1}F_{k-2}y - w|| \le ||y - w||$ and $||f_kz - w|| \le ||z - w||$ (3) So w is atleast as close to f_kz as to z.

But $f_k z = f_k F_{k-1} y = y$. Therefore w is at least as close to y as to $z = (1 - \alpha)y + \alpha f_{k-1}F_{k-2}y$.

Since X is strictly convex, $||y - w|| < ||f_{k-1}F_{k-2}y - w||$, which is a contradiction to (3). Therefore $f_{k-1}F_{k-2}y = y$ Now, $F_{k-1} = (1 - \alpha)y + \alpha y = y$ and $y = f_kF_{k-1}y = f_ky$

 \Rightarrow y is a common fixed point of f_k and F_{k-1} . Repeating the argument, we conclude that y is a common fixed point of f_i and F_i , j = 1, 2, ..., k

REFERENCES

- 1. M.A.Krasnoselskii; Two remarks on the methods of successive approxi-mations, Uspehi, Math. Nauk(N.S)10, No.1, 63(1955) 123-127.
- 2. F.F.Bonsall; Lectures on some fixed point theorems of functional analysis, Tata Institute of Fundamental Research, Bombay, 1962.
- 3. M.Edelstein; A remark on a theorem of M.A.Krasnoselskii. Amer. Math. Monthly 73 (1966)509-510.
- 4. A.Anthony Eldred, W.A.Kirk, P.Veeramani; Proximal normal structure and relatively nonexpansive mappings, Studia Math. 171(2005), no.3, 283-293.
- 5. W.A.Kirk, S.Reich and P.Veeramani; Proximal retracts and best proxim-ity pair theorems, Numer. Funct. Anal. Optim. 24(2003), no.7-8, 851-862.
- 6. S.Saiq Basha, P.Veeramani; Best Proximity pair theorems for multifunc-tion with open fibers, J.Appro. Theory, 103(200),119-129.
- 7. Peter K.F.Kuhfittig; Common fixed points of nonexpansive mappings by iteration, Pacific journal of mathematics, vol.97, No.1.1981.
- 8. S.Gomathi, V.Sankar Raj; Convergence of Krasnoselskii's iteration of relatively nonexpansive mappings in strictly convex spaces, GJESR, 5 pp, 288-293.

